Chemical Ecology of *Xyleborus glabratus* and Implications for Monitoring and Management

Paul E. Kendra, Wayne S. Montgomery, Jerome Niogret, Elena Q. Schnell, and Nancy D. Epsky

USDA-ARS, Subtropical Horticulture Research Station

13601 Old Cutler Road, Miami, FL email: paul.kendra@ars.usda.gov

Conference on Laurel Wilt Disease and Natural Ecosystems: Impacts, Mitigation, and the Future

Applied Approach

- Target = Adult female RAB, host-seeking flight
- Dispersal flight is risky
 - Harsh environment (dessication, wind, rain)
 - Predation (e.g. dragonflies)
 - No food available
- Strong selection
 - Reliable cues to find host trees quickly
 - Optimize timing of flight to minimize risks

Chemical Ecology of RAB

- Initial research on RAB attractants
 - (Hanula et al. 2008, Hanula & Sullivan 2008)
 - No evidence of pheromones (aggregation or sex)
 - No long-range attraction to fungal symbionts
 - No attraction to ethanol (standard lure for ambrosia beetles)

– Conclusions:

- RAB can attack healthy, unstressed trees
- Host tree volatiles = primary attractants
- α-copaene, calamenene are likely attractants from redbay; but cost/availability make them impractical for field lures
- Manuka and phoebe oils identified as attractive baits for RAB

ARS - Miami,FL

Research - RAB attractants (2009-pres.)
Multidisciplinary approach

- Field tests (forest sites)
- Lab tests (Archbold Biol. Station, Lake Placid)
 - Behavioral bioassays (attraction, boring preferences)
 - Electrophysiology techniques to measure olfactory responses
- Chemical sampling & analysis (Miami)
 - Volatile collections
 - Gas chromatographymass spectrometry (GC-MS)

1. Method for Capture of Live RAB

General Method

- Late afternoon (~4:00 pm)
- Lay cotton sheet on ground
- Bait = Freshly-cut host wood
- "Lure in" ambrosia beetles
- Collect with soft brush

Kendra et al. 2012 FL Entomol.

Unique Observation: Temporal Separation of Beetle Species

- Multiple species attracted to wood volatiles
- X. glabratus flies earlier
 (27 collection dates, Apr-Oct 2011)
- Useful method for obtaining RAB in host-seeking behavior, the perfect stage to evaluate attractants
 - Lab bioassays
 - Electrophysiology studies

Kendra et al. 2012 Environ. Entomol.

2. Electroantennography (EAG)

Technique to measure olfactory response of antennal receptors (How well does an insect smell a particular chemical?)

- Mount antenna between 2 electrodes
- Place under purified air flow
- Deliver chemical sample
- Measure receptor potential

EAG lab at Archbold Biol. Station

Sample EAG recordings from single RAB antenna

EAG Technique

Major challenge: small size of RAB antenna (0.3-0.4 mm length)

- Used a gold, 2-pronged electrode
- Electrode modified by attaching a flexible gold wire to one prong

Validation of New EAG Methods

Comparative studies with 3 species: *X. glabratus, X. affinis,* and *X. ferrugineus*

- Ethanol = standard reference chemical
- EAG responses to test chemicals could then be expressed as a percentage relative to ethanol

Kendra et al. 2012. Environ. Entomol.

3. Bolt Boring Bioassay

No-choice tests to assess RAB boring behaviors

1-gallon bucket

1 bolt plus 10-15 female RAB

Recorded # RAB boring and location on bolt after 2, 4, 6,8, 24 hr

(Positive boring = half of the body inserted)

Replicated 5x

Kendra et al. 2013 FL Entomol.

Composite Results – Bioassays

Silkbay (99%)

Swampbay/Redbay (91%)

Avocado (80%)

Camphor tree (50%)

Lancewood (44%)

Live Oak (0%)

>70% boring on cut end; trees most susceptible to attack after pruning or injury.

4. Comparative Field Tests

- Replicated field tests with freshly-cut wood bolts
- Silkbay most attractive = positive control; captures normalized
- Determined relative attraction of 9 species within Lauraceae

Kendra et al. 2014 PLoS ONE

5. Chemical Analysis

- Emissions of terpenoids from bolts correlated with RAB captures in field
- 4 sesquiterpenes
 - Major
 - α-cubebene (peak 2)
 - α-copaene (peak 3)
 - Minor
 - α-humulene (peak 6)
 - calamenene (peak 8)

Kendra et al. 2014 PLoS ONE

Current Hypothesis - Host Location, Acceptance

Long-range: RAB in flight attracted to the odor plume from host trees.

Terpenoids: α-copaene, α-cubebene, α-humulene, calamenene
(Hanula & Sullivan 2008, Kendra et al. 2011, 2014); eucalyptol (Kuhns et al. 2014); other monoterpenes (Martini et al. 2015)

Mid-range: RAB uses visual cues to find hosts of appropriate diameter (Mayfield and Brownie 2013)

Short-range: RAB detects (1) terpenoid gradients to find best site for attack (avocado: α -copaene and α -cubebene) (Niogret et al. 2013), and (2) fungal odors = food attractants (Hulcr et al. 2011, Kuhns et al. 2014)

On contact: RAB 'taste' and 'feel' the wood to confirm suitability (eucalyptol, Kuhns et al. 2014)

Summary: Host must smell, look, taste, and feel 'right' before boring initiated.

Development of Field Lures for RAB

- First lures = phoebe oil, manuka oil (Hanula & Sullivan 2008)
- However, tests in FL (2009-2010) indicated that manuka lures not very effective

(Kendra et al. 2011. J. Chem. Ecol.)

Follow-up Tests Confirmed Results

(Kendra et al. 2012. J. Econ Entomol.)

- Phoebe caught 6X more RAB
- Manuka lost attraction after 3 wk
- Unfortunately, phoebe lures no longer available, manuka lures only option for RAB monitoring

Evaluation of Other Essential Oils

Field tests in 2012 compared 7 essential oils for RAB attraction:

(Homemade lures – 2 ml oil)

- Manuka
- Phoebe
- Cubeb
- Ginger root
- Angelica seed
- Tea tree
- Valencia orange

(Agricultural Research 2012)

(Kendra et al. 2013. Am. J. Plant Science)

Cubeb oil identified as a new RAB attractant

(from berries of tailed pepper Piper cubeba)

Field Tests 2013

Collaboration with Synergy Semiochemicals Corp. (BC, Canada)

New lure = distilled cubeb oil in bubble lure (enriched in sesquiterpenes)

Field tests to compare efficacy and longevity of commercial lures:

- Cubeb bubble lure
- Manuka lure
- Phoebe lure
- Unbaited control

Test 1 (Highlands County, FL)

(Kendra et al. 2014. J. Pest Science)

Cubeb bubble lure captured 3 times more RAB than manuka

Test 2 (Glades County, FL)

(Kendra et al. 2014. J. Pest Science)

 At very low population levels, cubeb bubble lure captured 6 times more RAB than manuka

Test 3 (Highlands County, FL)

(Kendra et al. 2015. J. Econ. Entomol.)

- Cubeb > phoebe > manuka
- Cubeb field life of 3 months

Lure Emissions

Manuka:

 High initially,
 expon. decay
 (large surface area: volume ratio)

Cubeb: Low initially, slow, steady release

(smaller surface area: volume ratio)

(Kendra et al. 2015. J. Econ. Entomol.)

Conclusions

Cubeb bubble lure

- More attractive than the manuka lure
- Has a field life of at least 3 months, due to extended low release of sesquiterpenes
- Best product currently available for detection of RAB (and less expensive than the manuka lure)

However, cubeb lure contains a complex mixture of terpenoids; specific attractive chemicals had not been confirmed.

Further Improvement of RAB Lure

(Collaboration with Synergy)

Goal = Elucidate the primary attractants in cubeb oil.

- Used fractional distillation to separate whole oil into 17 fractions (based on chemical boiling point)
- Fractions formulated as bubble lures
 - EAG analyses
 - 2-choice bioassays
- Only 2 fractions were significantly attractive to RAB; both were high in α -copaene and α -cubebene
- Decided to focus on α-copaene first

New Lure Evaluations

Two prototype lures prepared

- Copaiba oil
 (9% α-copaene, no cubebene)
- Proprietary oil product (50% α-copaene)

12-wk field test

 Compare new lures to cubeb lure (10% α-copaene, 10% α-cubebene)

Conclusions

- (-) α -copaene = primary attractant
- Increased copaene = improved lure

Kendra et al. J. Pest Sci. (in review)

THANK YOU!

Sources of Funding

- USDA National Plant Disease Recovery System
- Florida Avocado Administrative Committee

- Kendra, P. E., W. S. Montgomery, J. Niogret, E. Q. Schnell, M. A. Deyrup, and N. D. Epsky. 2014. Evaluation of seven essential oils identifies cubeb oil as most effective attractant for detection of *Xyleborus glabratus* (Coleoptera: Curculionidae: Scolytinae). J. Pest Sci. 87: 681-689.
- Kendra, P. E., W. S. Montgomery, J. Niogret, G. E. Pruett, A. E. Mayfield III, M. MacKenzie, M. A. Deyrup, G. R. Bauchan, R. C. Ploetz, and N. D. Epsky. 2014. North American Lauraceae: Terpenoid emissions, relative attraction, and boring preferences of redbay ambrosia beetle, *Xyleborus glabratus* (Coleoptera: Curculionidae: Scolytinae). PLoS ONE 9 (7): e102086.
- Kendra, P. E., J. Niogret, W. S. Montgomery, M. A. Deyrup, and N. D. Epsky. 2015. Cubeb oil lures: Terpenoid emissions, trapping efficacy, and longevity for attraction of redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). J. Econ. Entomol. 108: 350-361.
- Kendra, P. E., W. S. Montgomery, M. A. Deyrup, and D. Wakarchuk. Improved lure for redbay ambrosia beetle developed by enrichment of α -copaene content. J. Pest Sci. (in review).